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Abstract: Stationarity, or the assumption that the statistical characteristics of hydrologic time series data
are constant through time, enables the use of well-accepted statistical methods in water resources
planning and design in which future conditions rely primarily on the observed record. However, recent
scientific evidence shows that—in some places, and for some impacts relevant to the operations of the
U.S. Army Corps of Engineers (USACE)—climate change and human modifications of the watersheds
are undermining this fundamental assumption, resulting in nonstationarity. The purpose of this User
Manual is to support the use of Version 1.1 of the USACE Nonstationarity Detection Tool, released in
March 2016. This version of the User Manual is a September 2018 to the original 2016 User Manual
(Friedman et al., 2016). The Nonstationarity Detection Tool enables the user to apply a series of statistical
tests to assess the stationarity of annual instantaneous peak streamflow data series at any United States
Geological Survey (USGS) streamflow gage site with more than 30 years of annual instantaneous peak
streamflow records through Water Year 2014. The tool will aid practitioners in identifying continuous
periods of statistically homogenous (stationary) annual instantaneous peak streamflow datasets that can be
adopted for further hydrologic analysis. The tool also allows users to conduct monotonic trend analyses
on the identified subsets of stationary flow records. The tool facilitates access to USGS annual
instantaneous peak streamflow records; does not require the user to have either specialized software or a
background in advanced statistical analysis; provides consistent, repeatable analytical results that support
peer review processes; and allows for consistent updates over time. The User Manual includes a
discussion of the technical concepts incorporated into the Nonstationarity Detection Tool, a description of
the user interface, an explanation of how to apply the user interface to execute hydrologic analysis, and a
series of examples highlighting how the tool is applied. This user guide does not cover all possible
situations one may encounter using the tool. The first step in conducting nonstationarity detection is to
carry out data preparation and exploratory data analysis, which are described in detail in Section 3. The
Nonstationarity Detection Tool is not a substitute for professional engineering judgment.
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Introduction

Stationarity, or the assumption that the statistical characteristics of hydrologic time series data are
constant through time, enables the use of well-accepted statistical methods in water resources planning
and design in which future conditions rely primarily on the observed record. Though hydrologic
engineers have been aware that this assumption over-simplifies a complex process (e.g., Chow
1964), it was an acceptable assumption for the planning and design of water resources projects
where observed records were relatively short and detailed analytical or dynamic representations
of physical processes were not available. However, recent scientific evidence shows that—in some
places, and for some impacts relevant to the operations of the U.S. Army Corps of Engineers (USACE)—
climate change and human modifications of the watersheds are undermining this fundamental assumption,
resulting in nonstationarity (Milly, et al., 2008).

The Nonstationarity Detection Tool was developed to support draft USACE Engineer Technical Letter
(ETL) 1100-2-X, Guidance for Detection of Nonstationarities in Annual Maximum Discharges, to detect
nonstationarities in annual instantaneous peak streamflow data series. Per ETL 1100-2-X, engineers will
be required to assess the stationarity of observed streamflow records analyzed in support of hydrologic
analysis carried out for USACE planning and engineering decision-making purposes (U.S. Army Corps of
Engineers, Forthcoming).

The Nonstationarity Detection Tool enables the user to apply a series of statistical tests to assess the
stationarity of annual instantaneous peak streamflow data series at any United States Geological Survey
(USGS) streamflow gage site with more than 30 years of annual instantaneous peak streamflow records
through Water Year 2014. The tool will aid practitioners in identifying continuous periods of statistically
homogenous (stationary) annual instantaneous peak streamflow datasets that can be adopted for further
hydrologic analysis. The tool also allows users to conduct monotonic trend analyses on the identified
subsets of stationary flow records. The tool facilitates access to USGS annual instantaneous peak
streamflow records; does not require the user to have either specialized software or a background in
advanced statistical analysis; provides consistent, repeatable analytical results that support peer review
processes; and allows for consistent updates over time.

The purpose of this User Manual is to support the use of Version 1.1 of the Nonstationarity Detection
Tool, released in March 2016. The September 2018 update to the original User Manual (Friedman et al.,
2016) adds more detailed discussion of several statistical tests in addition to the existing discussion of the
technical concepts incorporated into the Nonstationarity Detection Tool, a description of the user
interface, an explanation of how to apply the user interface to execute hydrologic analysis, and a series of
examples highlighting how the tool is applied. This user guide does not cover all possible situations one
may encounter using the tool. The first step in conducting nonstationarity detection is to carry out data
preparation and exploratory data analysis, which are described in detail in Section 3. The Nonstationarity
Detection Tool is not a substitute for professional engineering judgment.



1  Technical Background

1.1  Statistical Methods Used in the Nonstationarity Detection Tool

The tool performs nonstationarity detection using the Open Source R statistical programming language (R
Development Core Team 2011) and four freely available statistical test packages associated with it: cpm
(Ross, 2015), bep (Erdman & Emerson, 2007), ecp (James & Matteson, 2015), and trend (Pohlert, 2015).
These packages contain the following sets of statistical methods that the tool uses to detect
nonstationarities in annual instantaneous peak streamflow records: likelihood ratio testing, energy-based
algorithms, Bayesian Monte-Carlo simulation, and Pettitt tests. Additionally, a custom package developed
specifically for this tool executes the Lombard model to test for abrupt and smooth nonstationarities.

1.1.1 Types of Statistical Methods for Nonstationarity Detection

The statistical methods applied within the Nonstationarity Detection Tool are categorized by the type of
nonstationarity detected and whether the nonstationarity is representative of a smooth or abrupt change in
the statistical properties of the dataset under analysis.

i.  Type of Nonstationarity — Methods that only detect differences in the mean will not detect
nonstationarities where the mean of the data stays consistent while the variance/standard
deviation changes. Likewise, methods that only detect differences in variance/standard deviation
will not detect nonstationarities where the mean of the data changes while the variance/standard
deviation stays consistent. For this reason, the tool applies several methods that assess
nonstationarities in time series datasets driven by changes in the mean, variance/standard
deviation, and in the distributional properties of the dataset.

a. Mean-based nonstationarity methods detect a nonstationarity where there has been a
significant change in the average value of the data. The Lombard Wilcoxon, Pettitt,
Mann-Whitney, and Bayesian methods are all mean-based.

b. Variance-based nonstationarity methods detect a nonstationarity where there has been
a significant change in the variance/standard deviation of the data. The Mood and
Lombard Mood methods are variance-based statistical tests.

c. Distribution-based nonstationarity methods detect a nonstationarity where there has
been a significant change in the underlying distribution of the data, which can be caused
by a change in the parameters of the same distribution (e.g. going from one normal
distribution to another) or from one distribution type to another (e.g. going from a normal
distribution to a beta distribution). The Cramer-Von-Mises, Kolmogorov-Smirnov,
LePage, and Energy Divisive methods are distribution-based.

ii.  Smooth versus Abrupt Nonstationarities — The methods are also categorized by whether the
nonstationarities they detect represent abrupt or smooth changes in the data. Here, a smooth
transition refers to a gradual change in the mean, variance/standard deviation, and/or distribution
of the annual instantaneous peak streamflows recorded at a USGS gage site. The only methods in
the tool that can detect smooth changes in the statistical properties of the datasets under analysis
are the smooth Lombard Wilcoxon and smooth Lombard Mood methods. The remaining methods
(including the abrupt Lombard Wilcoxon and abrupt Lombard Mood methods) detect abrupt
changes in the dataset. Abrupt changes occur at a single point in the record, and separate the
period of record into two subsets of data that have one or more of the following: different means,
different variances and standard deviations, or different distributions. Arecord can have multiple
abrupt changes, separating it into several subsets of data.



1.1.2 Other Characteristics of Statistical Methods for Nonstationarity Detection

In addition to the categorization of statistical methods described above, there are other defining
characteristics associated with the statistical tests applied in the Nonstationarity Detection Tool. These
traits should be taken into consideration when interpreting the results generated by the tool, especially
when assessing why some methods detected a nonstationarity while other methods did not. The properties
associated with each of the statistical tests packaged into the Nonstationarity Detection Tool are described
in further detail in Table 1.

i.  Methods are either parametric or non-parametric. If the data used for detection is not normally
distributed, which is often the case with annual instantaneous peak streamflow data, then
parametric methods are not appropriate. Applying parametric methods to data that is not normally
distributed can return inconsistent or incorrect results. The Anderson-Darling Test, which is
incorporated into the Nonstationarity Detection Tool, is applied to assess whether or not a given
dataset conforms to a normal distribution. The tool application will not apply statistical tests that
rely on the assumption of normality, unless the results of the Anderson-Darling Test indicate that
the selected annual instantaneous peak streamflow record conforms to a normal distribution. This
test only applies to the Bayesian method, which relies on the assumption of normality.

ii. Methods can detect either single or multiple nonstationarities. The Pettitt method and all of the
Lombard methods are only able to detect the single most prominent nonstationarity in a time
series. The rest of the methods are able to detect multiple nonstationarities within a single time
series.

iii.  For the abrupt methods, results indicating a nonstationarity in the flow record may represent
either the start year or the end year of a homogeneous record. Suppose a method detects only one
nonstationarity, in 1942. For methods that detect the first year, that means that the period from the
start of the record through 1941 is homogenous and the period from 1942 to the end of the record
is also homogenous. That is, those methods detect the first year of the second homogenous
subseries. For methods that detect the end year, the result “1942” means that the period from the
start of the record through 1942 is homogenous and the period from 1943 to the end of the record
in homogenous. That is, those methods detect the last year of first homogenous subseries. Ifa
method detects the first year of the second homogenous subseries, then “Yes” appears in the
“Detects First Year of Second Subseries” column of Table 1. For guidance on how to account for
this difference across methods, refer to Section 3.3.

iv.  Certain statistical methods have strengths and weaknesses that may make them more appropriate
to a given application than an alternate statistical test. Depending on the data used, these
statistical weaknesses may render a method inappropriate. For example, the Cramer-von-Mises
method is not as adept at detecting a change in the mean of a distribution of annual instantaneous
peak streamflow records as it is in detecting changes in the extreme values (e.g. minimum,
maximum) of a distribution of annual instantaneous peak streamflow records.

1.1.3 Statistical Significance

The Nonstationarity Detection Tool is designed to identify statistically significant nonstationarities in
annual instantaneous peak streamflow records. The method for determining statistical significance differs
according to the nonstationarity detection method applied as described below. For details about how
adjusting the sensitivity parameters for each of the methods affects the output, refer to Table 1 in Section
1.1.5. The parameters can be adjusted using the Sensitivity Parameters on the Nonstationarity Detector
and Method Explorer tabs in the tool described in Sections 2.1 and 2.3, respectively.

i. In the tool, Bayesian change point (bcp) implementation requires two steps. First, the tool tests
the distribution of the data, validating that the data is normally distributed. If the data passes this
test, the parametric Bayesian method’s assumptions are valid and it is implemented by the tool.



As is typical for a Bayesian approach, the method assumes a “prior” distribution, establishing a
preliminary belief about the data's behavior before any evidence is considered. Iteratively, the
method samples data (or evidence) to adjust that “prior” into a “posterior” distribution, taking
into account the preliminary beliefs and the quantifiable evidence together. Using this
“posterior,” the test can draw measurable conclusions about the data. Here, the Bayesian method
iteratively breaks the series into partitions and assesses whether the “posterior” distributions
within these segments all have the same mean. If the partitions have “posterior” distributions with
different means, the test flags their boundaries as nonstationarities. To ensure statistical
significance, the tool allows the user to adjust the “Bayesian sensitivity” parameter (Erdman &
Emerson, 2007). This parameter does not affect the underlying assumptions in the method, but it
does act as a threshold for nonstationarity detection, or the minimum likelihood needed to
determine the presence of a nonstationarity based on the “posterior” distribution. A default level
of 0.5 is recommended. A value of 0.5 implies neutrality, meaning it does not favor the presence
or absence of a nonstationarity. Higher or lower values would represent favoring the absence (for
lower values) or presence (for higher values) of nonstationarities. The user may choose an
alternate sensitivity parameter based on professional judgment and experience.

For both the smooth and the abrupt Lombard methods, the tool performs an overall hypothesis
test that the record chosen contains a nonstationarity. For the Lombard Wilcoxon methods, this
test checks for a change in mean. The Lombard Mood method checks for a change in
variance/standard deviation (Quessy, Favre, Said, & Champagne, 2011). If the hypothesis test
returns a true result at the selected level of significance, the Lombard method will return the
detected nonstationarity. The selected level of significance for the Lombard methods represents
the probability of a Type I error, or the probability of accepting an alternative hypothesis when
the null hypothesis is true. In this context, it is the probability of incorrectly asserting that the
record contains nonstationarities when in fact it is stationary. The default value for the Lombard
method sensitivity in the tool is 0.05, but the user can change this to 0.01 or 0.1. Because they
represent accepted probabilities of Type | errors, these values are typically selected as the
standard significance threshold within statistical literature. The user may determine an alternate
sensitivity parameter using their best judgment.

The energy divisive method (ecp) iteratively detects a nonstationarity, segments the time series
according to that non-stationarity, and then detects subsequent nonstationarities. To determine if a
nonstationarity is detected at a given point, the method repeatedly performs a statistical test
against all previously detected segments to determine if a reasonable level of statistical
significance has been achieved. The process continues until it reaches a point that is not
statistically significant (James & Matteson, 2015). Similar to other methods, the level of
statistical significance is represented as the probability of a Type I error, or the probability of
detecting a nonstationarity when none is present. To account for the repeated tests across all
possible subsets of the period, a higher level of default sensitivity (0.5) has been chosen to ensure
that the method regularly returns at least one nonstationarity. The user can—using professional
judgment—adjust the level of statistical significance this method uses by adjusting the
accompanying sensitivity parameter.

For the Pettitt test, the tool returns a single nonstationarity at the point in the dataset where the
difference in the mean between the subsets of data prior to and after the nonstationarity has the
greatest level of statistical significance (or smallest probability of a Type I error). The
significance value must also be below the threshold set in the Pettitt sensitivity parameter. P-
values are probabilities of Type | errors, or the probability of accepting an alternative hypothesis
when the null hypothesis is true. In this context, it is the probability of incorrectly asserting that
there is a nonstationarity when in fact there is none. The default value for the Pettitt sensitivity in
the tool is 0.05, but the user can change this to 0.01 or 0.1. Because they represent accepted
probabilities of Type I errors, these values are typically selected as the standard significance



threshold within statistical literature. The choice of a statistical significance level is determined
by professional judgment.

v.  For the Change Point Model (CPM) methods, the algorithm runs the named statistical test (e.g.,
the Mood test) on the two segments of the time series created by partitioning the record at every
possible point in the series to initially detect changes in the mean, variance/standard deviation, or
distribution. After changes are detected, the data is re-examined to determine when these detected
changes first occurred in sequence. This process only returns statistically significant results given
the sensitivity parameter selected by the user. This sensitivity parameter corresponds to the
average number of data points until a Type I error occurs, or the probability of accepting an
alternative hypothesis when the null hypothesis is true (Ross, 2015). The recommended default
value is 1,000, as that represents the most neutral value in the set of possible values for the
sensitivity parameter. However, the user can change this sensitivity parameter to be one of the
following values: 370, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000,
8,000, 9,000 10,000, 20,000, 30,000, 40,000 or 50,000. The values for this sensitivity parameter
are limited as they are related to a series of precomputed statistical distributions. The choice of an
alternate sensitivity parameter may be guided by professional judgment.

If the user has prior knowledge of a nonstationarity in the data (e.g., construction and operation of a dam
with significant storage upstream from a stream gage), then that expected nonstationarity could be used as
a guide for determining the associated level of significance applied by each of the statistical tests
described above. The default levels of significance described above may not be able to detect the known
nonstationarity. In this case, the user is advised to adjust the sensitivity parameters associated with each
test using professional judgment and experience to ensure they are sensitive enough to detect this known
nonstationarity. After adjustments to sensitivity parameters are made, any additional nonstationarities
detected could be considered to be equally statistically significant.

Because the abrupt results may represent either the start year or the end year of a homogeneous record,
and because each statistical test might be producing slightly different results, the practitioner could
combine results from different tests that fall within a five year period in order to segment the time series
only once within that five year period. Similarly, when the smooth nonstationarity detection techniques
identify a statistical transition period of five years or less, it can be considered indicative of a single
nonstationarity. It is up to the user to select the start year within the transition period or amongst an array
of nonstationarities that fall within a five year period. If more methods detected a nonstationarity in one
year than in the other, then the year with the most concurrence amongst methods is preferred to segment
the data. If multiple years have equal concurrence between the statistical methods applied (e.g., two
methods detected nonstationarities in each of two consecutive years) then the more recent year could be
used to segment the data.

At some sites, the tool may identify multiple clusters of nonstationarity years and/or long periods of time
over which the smooth nonstationarity detection techniques indicate statistical instability. Statistically
significant results are not necessarily operationally significant. It is up to the user to carry out sensitivity
analysis using the different nonstationarities identified in the record and/or the periods where the statistics
associated with the dataset are unstable to help them decide what period of record is appropriate for
subsequent hydrologic analysis.

The Nonstationarity Detection Tool is not a substitute for engineering judgment. Engineers are advised to
use their judgment to consider the resilience of the system when incorporating the range of results here in
their adopted hydrologic study or design results. Comparison of results generated using a modified
portion of the period of record to the results that would have been generated had traditional methods been
applied (period of record analysis) is advisable. If, for example, a flow-frequency analysis is carried out in
support of mapping the 2% floodplain, and truncating the record produces flow-frequency results which
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reduce the 2% flood magnitude from the 2% flood magnitude generated by using the entire period of
record, then the user could consider relying on traditional analysis technigues (using the entire period of
record) at that site for the most resilient characterization of the floodplain.

1.1.4 Length and Continuity of Record

The USGS annual instantaneous peak streamflow datasets available within the Nonstationarity Detection
Tool have a minimum of 30 years of record and ideally contain no discontinuities in the peak streamflow
record. If the period of record contains significant discontinuities, or if it has been truncated by the user to
less than 30 years of data, then detected nonstationarities may be inaccurate. The tool automatically warns
the user if there are gaps in the USGS annual instantaneous peak streamflow data record at a given gage
site or when statistical tests for nonstationarities are being applied to less than 30 years of record.

The statistical methods used in the Nonstationarity Detection Tool require a continuous record to detect
changes in the statistical properties of the flow dataset. If missing data is detected, the tool will omit those
years’ peak streamflows from the period of record and analyze the remaining data as if it was a single
continuous sequence. For example, if a period of record is complete from 1902 to 2002, but the peak
streamflow data for 1967 is missing, the tool will shift all observations after 1968 one year earlier to
create a single continuous sequence for nonstationarity detection. These scenarios generate a dynamic
warning message for the user, because shifting observations may create issues with any nonstationarity
issues detected.

In addition to the sensitivity parameters described above, the CPM methods have an additional “CPM
Methods Burn-In Period” parameter. The default value for this parameter is 20. This means that any
changes in the annual instantaneous peak streamflow data series cannot be detected during the
initialization period by these methods until after the twentieth observation (or water year) in the time
series. However, the resulting nonstationarities identified by this method may occur prior to this value.
This default value represents a good balance between the desire to detect nonstationarities in the early
section of the record and the fact that these statistical methods will perform best when given more time to
incorporate the variability in the record. Users can adjust this value between 5 and 50 using the “CPM
Methods Burn-In Period” slider on the Sensitivity Parameters section of the Nonstationarity Detector tab,
which is described in Section 2.1.

1.1.5 Matrix of Statistical Methods for Nonstationarity Detection

Table 1 provides an overview of each of the statistical methods applied by the Nonstationarity Detection
Tool. Please note that those methods that share names with established statistical tests are algorithms that
apply the named statistical test repeatedly to detect nonstationarities. The algorithms include a check for
whether the p-values from their respective tests demonstrate statistically significant results, as detailed in
Section 1.1.3.
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Table 1: Statistical Methods Implemented in the Nonstationarity Detection Tool

Detected Year

Input Parameters

Last= Last year
- ‘ Sinal Multiol of previous,
- . ype o ingle or Multiple homoageneous
Statistical Test  Parametric Nonstationarity Nonstationarities su%set Strengths/Weaknesses
Parameter Default Description
First= First year
of subsequent
homogeneous
subset
The Change Point Model (CPM)
Determines how many observations are used for
the initialization period. If startup = 20, then
changes that occur in the first twenty
observations will not be used for changepoint
Burn-In 20 detection. As this parameter is specifically
Period related to the initialization period, the final
changepoints detected by this method may occur . .
prior the value supplied by the user. Thisis used | This method may be more likely to
Cramer-von- o ) because the statistical tests will have low power | detect a nonstationarity related to the
Mises No Distributional/Abrupt Multiple Last for small sample sizes. tails or extremes of a distribution
rather than the center of a
distribution.
Higher values will result in fewer
nonstationarities. Must have one of the
CPM 1000 following values: 370, 500, 600, 700, 800, 900,
Sensitivity 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000,
8,000, 9,000 10,000, 20,000, 30,000, 40,000 or
This method may be more likely to
Fellusgeuy: No Distributional/Abrupt Multiple Last see CPM Cramer-von-Mises alsiest @ oS ToiE 137 [ElE el [ e
Smirnov center of a distribution rather than the
tails or extremes of a distribution.
Mann- N Mean/Abrupt Multipl Last CPM C Mi
Whitney [o ean/Abrup ultiple as see ramer-von-Mises
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Detected Year

Last= Last year

Input Parameters

- ‘ Sinal Multiol of previous,
_— . ype o ingle or Multiple homogeneous
Statistical Test  Parametric Nonstationarity Nonstationarities su%set Strengths/Weaknesses
Parameter Default Description
First= First year
of subsequent
homogeneous
subset
LePage No Distributional/Abrupt Multiple Last see CPM Cramer-von-Mises
Mood No Variance / Abrupt Multiple Last see CPM Cramer-von-Mises
The Lombard Model
Mean/Abrupt This determines the level of significance at
which nonstationarities should be detected. It This method does not work well with
Lombard . Lombard can also be interpreted as the maximum p-value . : -
. No Single Last v 0.05 - - < . short time series, or with small
Wilcoxon Sensitivity associated with these nonstationarities. There ; ;
L - L changes in magnitude.
are a limited number of available sensitivity
values due to statistical constraints.
Mean/Smooth
Variance/ Abrupt . .
Lombard This method does not work well with
Mood No Single Last See Lombard Wilcoxon short time series, or with small
. changes in magnitude.
Variance/Smooth
Other Methods
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Detected Year

Last= Last year

Input Parameters

- ; Sinal Multiol of previous,
- . ype 0 ingle or Multiple homogeneous
Statistical Test ~Parametric Nonstationarity Nonstationarities su%set Strengths/Weaknesses
Parameter Default Description
First= First year
of subsequent
homogeneous
subset
Pettitt This represents the probability that the
Pettitt No Mean/Abrupt Single First Sensitivity 0.05 nonstationarity detected is a false positive or the
p-value associated with the Pettit test.
This is the minimum likelihood needed to
Bayesian Bayesian determine the presence of a nonstationarity, This method does not work well with
Changepoint Yes Mean/Abrupt Multiple Last Sensitivity 0.5 based on the “posterior” distribution. A value of short time series, or with small
(BCP) 0.5 implies neutrality, meaning it does not favor changes in magnitude.
the presence or absence of a nonstationarity.
This method can sometimes detect a
This value represents a change threshold or the series of nonstationarities located in
e Energy- robability that the point in question is a close proximity to one another. These
Divisive No Distributional/Abrupt Multiple First Based 0.5 (AEIOEETIIS) P Al [AOTMILEY ;
Method (ECP) Sensitivity nonstationarity. Larger values will yield less nonstationarities may not all be

nonstationarities.

operationally significant so it is
important to examine them carefully.
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1.2  Statistical Methods Used for Trend Analysis

The purpose of this section is to outline how the tool performs the detection of monotonic trends within
the identified stationary subsets of the record. Detected nonstationarities are used to subdivide the period
of record into stationary subsets, each of which are tested for the presence of monotonic trends. Note that
the monotonic trend analysis tools is not appropriate for subsets of data with less than 10 years of record.
The tool supports not only the detection of monotonic trends, but also indicates whether these trends are
positive or negative. All of this analysis takes place within the Trend Analysis tab of the tool, which is
described in Section 2.2, with additional detail in Section 3.4. The tool executes three statistical tests to
identify and describe monotonic trends: the Mann-Kendall test, the Spearman test, and Sen’s slope
estimator.

Like all statistical methods, the Mann-Kendall test, Spearman’s test, and Sen’s slope are more powerful
when applied to larger data sets. None of these methods are appropriate for time series that have fewer
than ten years of data. This is because the methods may detect trends where there are none with fewer
than ten data points. The significance values employed in applying these tests are a choice among
standards in statistics. They are held static within the tool, in order to facilitate consistency in the
application of these tests across the Corps. In addition to these methods, the tool reports a trend for
“parametric statistical methods,” which is based on the slope of a simple linear regression line fit using
the data.

1.2.1 Mann-Kendall Test for Trend Detection

The tool implements the Mann-Kendall test as a nonparametric measure of trend. The test calculates the
Kendall Rank Correlation Coefficient, or Kendall’s tau, a value between -1 and 1, where values near -1
suggest monotonically decreasing series of annual instantaneous peak annual streamflow and values close
to 1 suggest monotonically increasing series of annual instantaneous peak annual streamflow. The test
determines whether the Kendall Rank Correlation Coefficient is significantly different from 0, implying a
trend. In the Nonstationarity Detection Tool, the test is implemented using the trend package in R
(Pohlert, 2015), and the alternative hypothesis—that a trend is apparent—is accepted to be true at the 0.05
significance level.

1.2.2 Spearman’s Test for Trend Detection

The tool implements the Spearman test as a second nonparametric measure of trend. Parallel to the Mann-
Kendall test, Spearman’s test calculates the Spearman Rank Correlation Coefficient, or Spearman’s rho, a
value between -1 and 1. Values close to -1 suggest strong negative dependence between the two variables
(in this case, between time and annual instantaneous peak annual streamflow) and values close to positive
one suggest strong positive dependence between two variables. Like the Mann-Kendall test, this test is
applied to determine whether the Spearman Rank Correlation Coefficient is significantly different from 0,
implying a trend. In the Nonstationarity Detection Tool, the test is implemented using the trend package
in R (Pohlert, 2015), and the alternative hypothesis—that a trend is apparent—is accepted to be true at the
0.05 significance level.

1.2.3 Sen’s Slope Estimator

The tool uses Sen’s slope estimator to give the robust, parametric, best-fit line for the annual
instantaneous peak streamflow record. Sen’s slope is an average of all the slopes between every two
points in two-dimensional series. In the case of the Nonstationarity Detection Tool, the two dimensions
are time and annual instantaneous peak annual streamflow. The tool implements this calculation with the
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trend package in R (Pohlert, 2015). Values for Sen’s slope that are greater than zero correspond to an
increasing, positive trend. Values less than zero indicate a negative trend. Under the Monotonic Trend
Analysis panel, the Sen’s slope result is provided as an indication of whether or not a positive or negative
trend was detected.
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2

User Interface

The Nonstationarity Detection Tool is composed of a landing page (Figure 1) and three tabs, each with its

own functionality. The first step in conducting nonstationarity detection is to carry out data preparation

and exploratory data analysis, described in detail in Section 3.

Welcome

Welcome to the Nonstationarity Detection Tool v1.1!

INTRO

This Nonstationarity Detection Tool was developed in conjunction with USACE Engineering Technical Letter (ETL) 1100-2-3, Guidance for
Detection of Nonstationarities in Annual Maximum Discharges, to detect nonstationarities in maximum annual flow time series. Per ETL
1100-2-3, engineers will be required to assess the stationarity of all streamflow records analyzed in support of hydrologic analysis carried
out for USACE planning and engineering decision-making purposes

The Nonstationarity Detection Tool enables the user to apply a series of statistical tests to assess the stationarity of annual peak
streamflow data series at any United States Geological Survey (USGS) annual instantaneous peak streamflow gage site with more than
30 years of flow record. The tool is intended to aid practitioners in identifying continuous periods of statistically homogenous (stationary)
annual peak streamflow datasets that can be adopted for further hydrologic analysis.

The web tool detects nonstationarities in the historical record to help the user segment the record into flow datasets whose statistical
properties can be considered stationary. The tool also allows users to cenduct monotonic trend analysis on the resulting subsets of
stationary flow records identified. The web tool facilitates direct access to annual maximum streamflow datasets, does not require the user
to have a background in advanced statistical analysis, provides consistent, repeatable results that support peer review processes, and
allows for consistent updates over time.

This functionality is contained within three different sheets
NONSTATIONARITY DETECTOR

The Nonstationarity Detector sheet uses a dozen different statistical methods to detect the presence of both abrupt and smooth
nonstationarities in the period of record.

TREND ANALYSIS
The Trend Analysis sheet displays the results from four different statistical methods for trend analysis

METHOD EXPLORER
Within the Method Explorer sheet, a user can select any of the twelve nonstationarity detection methods to view independently of the other
statistical tests

CONTACT

If you have any questions or comments, please let us know by contacting the team below:
Bryan Baker (Bryan.E Baker@usace.army.mil)

Chanel Mueller (Chanel Mueller@usace.army.mil)

Douglas Friedman (Douglas.l.Friedman@usace.army.mil)

Jody Schechter (Jody.H.Schechter@usace.army.mil)

Figure 1. Landing Page for the Nonstationarity Detection Tool

Nonstationarity Detector — This is the tab where the practitioner applies the twelve statistical
methods described in Section 1.1 to detect nonstationarities in annual instantaneous peak
streamflow data from a selected USGS streamflow gage site. This tab allows the user to review
the results of these tests for nonstationarities in annual instantaneous peak streamflow datasets, as
described in Section 3.3.

Trend Analysis — This tab is where the practitioner performs statistical tests to detect monotonic
trends, as described in Section 1.2. The process to apply these tests to both the entire annual
instantaneous peak streamflow time series and to stationary subsets of data identified using the
Nonstationarity Detector tab is described in Section 3.4.

Method Explorer — This tab allows the practitioner to select a single nonstationarity detection
method, rather than viewing the results of all twelve statistical tests concurrently.
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2.1 Nonstationarity Detector

Maonstationarity Detector | Trend Anahesis || Method Explorer

Monstatiocnarities Detected using Maximum Annual Flow
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monssationarties In flow necons.

Figure 2. Nonstationarity Detector Tab
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The Nonstationarity Detector tab, shown above in Figure 2, displays the results of the methods described

in Section 1.1. It has several filters that the practitioner can use to adjust the parameters associated with
the methods, which are listed in Section 1.1.5. The components of the tab are discussed below. For
guidance on how to interpret the results in this tab, refer to Section 3.
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1) Site Selection Dropdown Menus — Use the dropdown menus indicated by the “1” in Figure 2 to
select the state and the site name of the USGS gage site to be analyzed. See Section 3.2 for more
information.

2) Timeframe Selection — Adjust this slider, indicated by the “2” in Figure 2, to select the period of
record to analyze. See Section 3.2 for details.

3) Nonstationarities Detected using Maximum Annual Flow Graphic — As indicated by the “3” in
Figure 2, the annual instantaneous peak streamflow data series for the site and timeframe selected
is graphed along with vertical gray lines representing the abrupt nonstationarities detected in the
record. Gradual or smooth nonstationarities detected are shaded in blue. Additional information

related to the flow data series can be accessed by hovering over any of the flow series data points,
as seen in Figure 3.

Nonstationarities Detected using Maximum Annual Flow

100K

. A

Year: 1950
Maximum Annual Flow: 54,000

Annual Peak Streamflow in CFS

1880 1900 1920 1940 Go to USGS gage details » 2020

Water Year

Figure 3. Hover-text of Annual Flow, Nonstationarities Detected using Maximum Annual Flow Graphic

Underneath this graphic is a dialog box that will dynamically alert users when they have selected
either a period of record containing discontinuities (or missing data) and/or one that is considered
too short to accurately detect nonstationarities (less than 30 years of record). These messages
(such as the one shown in Figure 4) let users know that when the record is too short, or when
there are significant gaps in the flow dataset, there may be issues with the nonstationarities

detected.
Maonstationarity Detector
Monstationarities Detected using Maximum Annual Flow E5e peieoion
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Figure 4. Dynamic Warning Activated on the Nonstationarity Detector Tab
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Hovering over any of the vertical gray bars that indicate a nonstationarity in the annual
instantaneous peak streamflow record displays a list of the statistical methods used by the tool to
detect nonstationarities (see Figure 5). This hover-text indicates whether each of the listed
methods detected the nonstationarity indicated by the grey bar, as well as the water year of the
nonstationarity. Section 3.3 contains guidance for how to interpret the results displayed in this

graphic.

100K

50K

Annual Peak Streamflow in CFS

1880 1900

The USGS streamflow gage sites available for assessment within tl
data collection throughout the period of record and gages with shor
where there are significant data gaps.

In general, a minimum of 30 years of continuous streamflow measL
nonstationarities in flow records.
Heatmap - Graphical R

Cramer-Yon-Mises (CPM)

Kolmogaerov-Smirnov (CPM)

LePage (CFM)

Energy Divisive Method |

Lombard Wilcoxon

Pettitt

Mann-Whitney (CPM)

Bayesian

Lombard Mood

Mood (CPM)

Smooth Lombard Wilcoxon
Smeooth Lombard Mood
1880 1900

Nonstationarities Detected using Maximum Annual Flow

Year: 1912
Number of Nonstationarities Detected:
Type of Changepoint Detected: Distributional

Distributional Changepoint Tests
Cramer-von-Mises: No
Kolmogorov-Smirnov: No
LePage: No

Energy Divisive Method: Yes

Mean Changepoint Tests
Lombard Wilcoxon: No

Pettitt: No
Mann-Whitney: No
Bayesian: No

Variance Changepoint Tests
Lombard Mood: No
Mood: No

Smooth Changepoint Tests
Smooth Lombard Mood: No

Smooth Lombard Wilcoxon: No
Go to USGS gage details »

1920 1940 1960 1980

2000 2020

in USGS peak flow

Tying out analysis

ed to detect

2000 2020

Figure 5. Hover-text of Abrupt Nonstationarity, on the Nonstationarities Detected using Maximum Annual Flow Graphic

4) Heatmap Graphic — This graphic, indicated by the “4” in Figure 2, displays a tick mark for each
nonstationarity detected by each method. The color of the mark corresponds to the type of
nonstationarity each test is targeted to detect: mean, variance/standard deviation, or distribution
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(discussed in Section 1.1.1). The transitions in the statistical properties of the datasets, indicated
by the smooth Lombard detection techniques, are indicated by continuous blue fill. As shown in
Figure 6, hovering over the tick marks displays the water year associated with the nonstationarity
detected. Refer to Table 1 to determine whether the year shown is the first or last in a
homogeneous data set as this varies by method.

Mood (CPM)
Smooth Lombard Wilcoxon
Smooth Lombard Mood
1880 1900 1920 1940 1960 1980 2000 2020
Legend - e of Statistically Significant Change being Detected
. Distribution . Mean Variance Smooth

Heatmap - Graphical Representation of Staitstical Results
Cramer-Von-Mises (CPM) I
Kolmogorov-Smimov (CPM)
LePage (CPM) 1942 |
Energy Divisive Method |
Lombard Wilcoxon |
Pettitt |
Mann-Whitney (CPM) |
Bayesian
Lombard Mood

5)

6)

7)

Figure 6. Hover-text for Tick Marks in the Heatmap Graphic

Sensitivity Parameters — The sliders and controls indicated by the “5” in Figure 2 provide the
user with the ability to change the sensitivity of each family of nonstationarity detection methods.
These parameters are described in Sections 1.1.3 and 1.1.4, and appear in the matrix in 1.1.5.
They are set to the suggested default parameters for each statistical method. These default
parameters could be adjusted, using engineering judgment, if the user has reason to believe, based
on a priori knowledge, that the statistical tests are not sensitive enough at the default values to
detect known nonstationarities in the time series.

Mean and Variance Between All Nonstationarities Detected Graphic — This graphic, indicated
by the “6” in Figure 2, provides the mean, standard deviation, and variance for the subsets of data
for each homogenous period of flow data (between each of the nonstationarities detected). Each
of these measures is presented with their associated units of measurement and is color coded to
match the associated type of nonstationarity in the Heatmap Graphic. Note that, although the units
for mean and standard deviation are the same, the units associated with sample variance are
squared. This information can be used to determine the relative changes in mean or
variance/standard deviation associated with each of the nonstationarities detected, as described in
Section 3.3.

Page controls— The symbols indicated by the “7” in Figure 2, provide page controls for the tab.
From the left, the first symbol allows the user to export the results, the second reverts to the
original information shown on the tab, the third allows the user to make multiple updates without
waiting for the screen to refresh each time, and the last is to refresh data for the view. The export
options are to export the page as an image, a text file, a crosstab (Excel) file, or as a pdf. If the
screen refresh is paused (third button), it will be replaced with a different icon (the vertical line
will rotate clockwise 90 degrees) as a reminder to push the button again to refresh the screen.
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2.2 Trend Analysis
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Figure 7. Trend Analysis Tab

The Trend Analysis tab displays the results from the statistical methods for trend analysis, described in
Section 1.2. The page control (#7 on Figure 2) are the same for this tab. The other components in this tab,
shown in Figure 7, are described below. For guidance on how to use the tab to detect monotonic trends,
refer to Section 3.4.

1) Timeframe Selection Slider — To select the period of record to analyze, adjust the slider
indicated by the “2” in Figure 7 (detailed instructions are found in Section 3.2).

2) Trend in Maximum Annual Flow Graphic — This graph, indicated by the “3” in Figure 7,
displays the annual instantaneous peak streamflow time series for the USGS site and timeframe
selected.

Underneath this graphic is a dialog box that will dynamically alert users when they have selected

a period of record containing discontinuities (or missing data) and/or one that is considered too
short to accurately detect monotonic trends in the time series (less than 10 years of record). These
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messages (such as the one shown in Figure 8) let users know that there may be issues with the
trends detected in the selected timeframe.
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WG The period of record selected is too short. There are potential issues with the trends detected.

Trend Analysis

Figure 8. Dynamic Warning Activated on the Trend Analysis Tab

3) Monotonic Trend Analysis Panel — This panel (indicated by the “4” in Figure 7 and magnified
in Figure 9) provides the following statistical information about the detection of monotonic trends
in the portion of the annual instantaneous peak streamflow record displayed on the tab:

a. Tests for Statistically Significant Monotonic Trends:

Segment Trend Result Mann-Kendall — A Mann-Kendall test for the presence
of amonotonic trend is performed on the series in view, and the result is
displayed using a significance level of 0.05. For details regarding the Mann-
Kendall test, refer to Section 1.2.1.

Segment Trend Result-Spearman — Arank order Spearman test for the
presence of a monotonic trend is performed on the series in view, and the result is

displayed using a significance level of 0.05. For details regarding Spearman’s
test, refer to Section 1.2.2.

b. Assessmentof Trend Type (Negative vs. Positive Trend)

Segment Parametric Trend Line Direction — This represents whether the trend
displayed is positive or negative. The trend is positive when the annual
instantaneous peak streamflow increases as time moves forward. The trend is
negative when the annual instantaneous peak streamflow decreases as time
moves forward. This assessment is based on the slope of a simple linear
regression line fit using the data.
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ii. Segment Robust Parametric Trend Line Direction — This assessment is
interpreted the same way as the Segment Parametric Trend Line Direction,
discussed above, but it uses Sen’s Slope estimator—the average of all slopes of
the lines that can be drawn between every pair of points in the dataset. For details
regarding Sen’s Slope, refer to Section 1.2.3.

Monotonic Trend Analysis

Is there a statistically significant trend?
Yes, using the Mann-Kendall Test at the .05 level of significance.

No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?

Using parametric statistical methods, a positive trend was detacted.
Using robust parametric statistical mathods (Sen's Slope), a positive trend was detected.

2.3

Figure 9. Monotonic Trend Analysis Panel of the Trend Analysis Tab

Method Explorer

The Method Explorer tab allows a user to select any of the twelve nonstationarity detection methods listed
in Section 1.1.5 to view independently of the other statistical tests. This tab can be used to examine the
effects of adjustments to the sensitivity parameters associated with one test and the impacts of these
adjustments on the results. The page control (#7 on Figure 2) are the same for this tab. The other
components of the Method Explorer tab are described below.

1)
2)

3)

4)

Method Selection Dropdown Menu — Select one of the twelve statistical methods used for
detecting nonstationarities using the dropdown menu indicated by the “1” in Figure 10.
Timeframe Selection Slider — Adjust the slider indicated by the “2” in Figure 10 to select the
portion of the period of record to analyze. Refer to Section 3.2 for more information.
Nonstationarities Detected using [Method Name] at [Site Name] Graphic — This graphic,
indicated by the “3” in Figure 10, shows the annual instantaneous peak streamflow record for the
site and time selected. If the method selected in the Method Selector detected any
nonstationarities, then those are also indicated in the graphic. As shown in Figure 10, abrupt
nonstationarities are indicated by vertical, gray lines. Nonstationarities detected by smooth
detection methods are shaded in blue, as seen in Figure 11. As seen in Figure 12, additional
information related to the streamflow record or detected nonstationarities can be accessed by
hovering over any of the flow data points and clicking on the Go to USGS gage details link.

Underneath this graphic is a dialog box that will dynamically alert users when they have selected
a period of record containing discontinuities (or missing data) and/or one that is considered too
short to accurately detect nonstationarities (less than 30 years). These messages—such as the one
shown in Figure 13—Iet users know that there may be issues with the nonstationarities detected
in the selected period of record.

Mean and Variance Between Nonstationarities Detected with [Method Name] Graphic — This
graphic, indicated by the “4” in Figure 10, provides the mean, standard deviation, and variance
for the subsets of data for each homogenous period of flow data (between each of the
nonstationarities detected by the method selected in the Method Selection menu). This
information can be used to determine the relative changes in mean, standard deviation, or
variance associated with each of the nonstationarities detected. As with the Nonstationarity
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Detector Tab, please note that the segment graph only displays the associated changes in these
measures for abrupt nonstationarities.

5) Sensitivity Parameters — The sensitivity parameters associated with the chosen nonstationarity
detection method are provided in the portion of the tab indicated by the “5” in Figure 10. The
practitioner can view the effect of adjusting these parameters on the nonstationarities detected by
this method by sliding the indicators on the scales to the right or left.

6)

Welcome | Nonstationarity Detector | Trend Analysis | Method Explorer

Nonstationarities Detected using Pettitt at Method Selection

RED RIVER OF THE NORTH AT GRAND FORKS, ND | Pettitt
g Timeframe Selection
2 1360 2085
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The USGS streamflow gage sites available for assessment within this application include locations where there are discontinuities in USGS peak flow data
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Figure 10. Method Explorer Tab
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Figure 11. Nonstationarities Detected using Smooth Lombard Wilcoxon at Red River of the North at Grand Forks, ND
Graphic: Smooth Transition
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Figure 12. Nonstationarities Detected using Pettitt at Red River of the North at Grand Forks, ND Graphic: Hover-text
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Figure 13. Dynamic Warning Activated on the Method Explorer Tab
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3  Detecting and Interpreting Nonstationarities

3.1 DataPreparationand Exploratory Analysis

The first step in conducting Nonstationarity detection is to carry out data preparation and exploratory data
analysis. During this step, the practitioner identifies whether there is a priori knowledge of a
nonstationarity in the streamflow record and assesses the availability/quality of the annual instantaneous
peak streamflow data under consideration for analysis. Listed below are sources of information and
relevant tools available to the practitioner to complete this step.

i.  The USGS provides information that can be used for data preparation and exploratory data
analysis. This data is presented as part of the metadata associated with each USGS streamflow
gage recording site. The Nonstationarity Detector tab contains a direct link to the USGS webpage
for the selected streamflow gage site. As shown in Figure 14, this link can be accessed by
hovering over the blue annual instantaneous peak streamflow data displayed in the
Nonstationarities Detected using Maximum Annual Flow graphic, and then clicking on the Go to
USGS gage details link displayed in the hover-text that appears.

Nonstationarities Detected using Maximum Annual Flow

100K

h Il

Year: 1950
Maximum Annual Flow: 54,000

1880 1900 1920 1940 Go to USGS gage details » 2020

Water Yea:

Annual Peak Streamflow in CFS

Figure 14. Link to the USGS Gage Details Webpage
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The USGS Water-Year Summary report is another source of metadata available for each station
of interest. An example of this report is displayed in Figure 15, below.

science lor a changing workd

USGS Water-Year Summary 2014

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION - Lat 46°51'40", long 96°47°00" referenced to Morth American Datum of 1527, in sec.18, T.139 N., R.48 W.,
Cass County, ND, Hydrologic Unit 09020104, 0.7 mi upstream of Midtown Dam, 25 mi upstream from mouth of
Sheyenne River, and at mile 453,

DRAINAGE AREA - 6,200 miZ, approximately.

SURFACE-WATER RECORDS Information about gage
PERIOD OF RECORD - DAILY DISCHARGE--June 1901 to current year. Published as "at Moorhead, MN.", 1901, Monthly iod of d
discharge only for some periods, published in WSP 1308, _ period ot recor
[

PERIOD OF RECORD.—DAILY GAGE-HEIGHT —October 2000 to current year,

REVISED RECORDS - WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1524, WSP 1388: 1905-6, 1517-20(M),
1935(M), 1938-39(M), 1943,

GAGE - Water-stage recorder and concrete control from October 1, 1962 to present, datum of gage is 861.8 ft above | ..
Mational Geodetic Vertical Datum of 1579, Previous locations and datums are as follows: _ Gage description and

May 27, 1901 to August 31, 1914; Staff gage on timber breakwater of old Front Street bridge (mow Main Avenue) 1.8 previous gage locations
mi downstream. Datum was 860.75 ft above NGVD of 1929.

September 1, 1914 to July 31, 1528; Staff gage on trees above former dam 1.0 mile downstream. Datum was 871.1 ft
above NGVD of 1529,

August 1, 1928 to April 11, 1959; Staff gage in vicnity of Fargo Municipal Warer Plant 1.0 mile downstream from.
Datum was B67.4 ft above NGVD of 1929,

Agril 12, 1959 to September 30, 1960; Continuous recorder in conorete stilling well on downstream side of Interstate
94 bridge 2.0 mile upstream. Diatum was 867.4 ft above NGVD of 1329,

Octeber 1, 1960 to September 30, 1962; Continuous recorder in Fargo Municipal Water Plant at current location.
Datum was 8674 ft above NGVD of 1929,

REMARES - .
10/01/13-09/30/14: Records good except for estimated daily discharges, which are poor. —_— Data quality remarks
10/01/14-05/30/15: Records good except for estimated daily discharges, which are poor.

Commentsrelatedto
upstream regulation

mean sea level, adjustment of 1912; Mud Lake, flood storage capacity, 78,600 acre-ft at elevation 981 ft above mean
sea level, adjustment of 1912; Lake Traverse, floed storage capacity, 79,100 acre-ft at elevation 981 ft above mean

REGULATIOM. —Flow regulated by: Orwell Reservoir, flood storage capadty, 13, 300 acre-ft at elevation 1,070 ft above J
sea level, adjustment of 1912; and numerous other controlled lakes, ponds and several powerplants.

DIVERSIONS.--Figures of daily discharge do not indude diversions to dties of Farge and Moorhead, MN, from the
Sheyenne River,

Figure 15. Gage Description on USGS Website — Water Year Summary 2014
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The USGS also provides information related to data quality and regulation for each individual
water year for each site, which can be accessed by viewing the USGS Peak Streamflow page for a
site. Along with the annual instantaneous peak streamflow magnitudes, the USGS provides “Peak

Streamflow Qualification Codes;” these are displayed in Figure 16.

Peak Streamflow for North Dakota

@ Click to hide state-specific text

USGS 05054000 RED RIVER OF THE NORTH AT FARGO, ND

Cass County, North Dakota Output formats
Hydrelogic Unit Code 09020104 Table
Latitude 46°51'40", Longitude 96°47'00" NAD27
Drainage area 6,800 square miles Graph
Gage datum 861.8 feet above NGVD29 Tab-separated file
peakfq (watstore) format
Reselect output format
Water Date Gage Stream-
Year ¢ < Height < flow <
(feet) (cfs)
2004 Jun. 03, 2004 20.47 5,430°
2005 Jun. 18, 2005 28.18 9,8106
2006 Apr. 05, 2006 37.13 19,900°
2007 Jun. 08, 2007 30.842 13,500°
2008 May 05, 2008 19.50° 4,840°
2009 Mar. 28, 2009 40.84 29 500°
2010 Mar. 21, 2010
2011 Apr. 09, 2011
2012 Mar. 18, 2012
2013 Apr. 30, 2013
2014 Jun. 23, 2014

@ Peak Gage-Height Qualification Codes.

» 1 -- Gage height affected by backwater

e 2 -- Gage height not the maximum for the year
e 3 -- Gage height at different site and(or) datum
¢ 6 -- Gage datum changed during this year

B Peak Streamflow Qualification Codes.

1 -- Discharge is a Maximum Daily Average
2 -- Discharge is an Estimate

7 -- Discharge is an Historic Peak

6 -- Discharge affected by Regulation or Diversion

Figure 16. Peak Streamflow Qualification Codes — USGS website

Note that in addition to using the information presented by the USGS related to data quality and
regulatory history at a USGS site, the user is advised to seek out other resources to fully
understand the hydrologic properties of the watershed under study. This includes contacting local
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water resources experts who might have additional insight into the hydrologic properties of
drainage basin upstream of the site under investigation and into the quality of the data collected at
the site for any given year in the period of record.
ii.  The “waterData” package for the R programming language by Ryberg and Vecchia (2012) and
the USACE Hydrologic Engineering Center’s HEC-DSSVue (available at:
http://www .hec.usace.army.mil/software/hec -dssvue/downloads.aspx) both contain useful toolsets
that can be applied to handle and examine USGS data. Becoming familiar with these applications
would be beneficial and would support the data preparation and exploratory data analyses steps.
iii.  Annual peak streamflow data series can be visually inspected within the Nonstationarities
Detected using Maximum Annual Flow graphic of the Nonstationarity Detector tab (see Figure 2).

3.2 Selecta USGS Site and Timeframe for Nonstationarity Detection

In order to use the Nonstationarity Detection Tool tab to analyze a site, the user must first select the
correct state and site name from the Site Selection dropdown menus on the right side of the tab (shown
below in Figure 17; see Figure 2 to locate these menus in the context of the entire tab).

Site Selection
Select a state
T -

Select a site

2089000 - BRAZOS RV NR PALO PINTO... *

Figure 17. Nonstationarity Detector USGS Site Selection

Note that the watershed and site name can be selected by manually searching through the list or by typing
a partial name of the state or site. The tool will display a filtered list of options matching the input name,
shown in Figure 18 below.

Site Selection
Select a state
™ -

Selecta site

5083000 - BRAZOS RV NR PALO FINTO...

| »

LIFSCOME, T
BLANGA G ABV BUFFALT LK NR UMBARGER, TX
TWN FK RED RV MR WAYSIDE, TX
N FK RED
- BGROESBECK CK AT SHE
T FK RED RV NR WELL| 3
N FK RED RW NR SHAMROCK, TX
SWEETWATER CK NR KELTON, TX
PEASE RV NR VERNON, TX
- RED RV NR BURKBURNETT, TX
CHITA RV NR TRUSCOTT, TX
W NR BENJAMIN, TX
S|

NR HENRIETTA, TX

- RED RIVER NEAR GAINESVILLE, TX

- RED RIVER AT DENISON DAM NR DENISON, TX
RED RIVER A TV, T

00 - 5 SULPHUR
- N SULPHUR

° By Divisive Wetiod Sensitvy

Figure 18. Site Selection Filtered Results

Please note that if the site in question has less than 30 years of annual instantaneous peak streamflow
data, the tool will not allow the user to select it for analysis. A sample set of less than 30 years has too
few data points to produce meaningful results using the statistical tests selected to detect nonstationarities
in annual instantaneous peak streamflow datasets. The annual instantaneous peak streamflow data
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displayed in the graphic should be consistent with the annual instantaneous peak streamflow data series
available on the USGS website.

After selecting a site, the practitioner should evaluate whether the site’s record is continuous. If there is a
gap in the annual instantaneous peak streamflow time series (the blue line) shown in the Nonstationarities
Detected using Maximum Annual Flow graphic, then the record does not have information for the
intervening years. An example of this is shown in Figure 19.
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Figure 19. A Discontinuity inthe Record, shown in the Nonstationarities Detected using Maximum Annual Flow Graphic

When a significant discontinuity exists in the flow series, the Timeframe Selection slider can be used to
truncate the record so that only the most recent, continuous portion of the period of record, based on the
water year, is displayed. There are two ways to use the Timeframe Selection slider, which is located
below the Site Selection dropdown menus, on the right side of each tab. (See Figure 20; to locate the
slider in the context of the tab, see Figure 2.) They are discussed below.

i.  Theuser can drag the sliders to the appropriate start and end dates, as seen in Figure 20.

Timeframe Selection
1360 2085

R D

Figure 20. Dragging Sliders on the Timeframe Selection

ii.  Theuser can click on the start or end year, displayed above the slider, and then type the
appropriate year into the textbox that appears, as displayed in Figure 21.

Timeframe Selection
1360 2065

U [/

Figure 21. Typing Year of Reference before using Slider
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iii. To show all timeframe values, click on the filter icon above the end year, as shown in Figure 22.

Timeframe Selection o
1924 1939
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&0

|
1

Figure 22. Click on the Filter Icon to Show All Timeframe Selection Values

As shown in Figure 23, once the sliders have been adjusted, the Nonstationarities Detected using
Maximum Annual Flow graphic will refresh to display the selected period of record.
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Figure 23. Nonstationarities Detected using Maximum Annual Flow Graphic, with Timeframe Truncated to Remove
Discontinuity in the Flow Record

3.3 Nonstationarity Detection

The Nonstationarity Detector Tab will automatically apply all of the methods described in Section 1.1.1
and outlined in Table 1 to the selected annual instantaneous peak streamflow time series, and the tool will
display all statistically significant results on the Nonstationarities Detected using Maximum Annual Flow
graphic and the associated Heatmap (see Figure 2). For examples of how to apply these criteria when
making decisions about whether or not to segment data based on nonstationarities detected by the
methods in the tool, refer to Chapter 4.

3.3.1 Identifying Nonstationarities for Segmentation of the Data Using the Web
Application

It is up to the user to determine which, if any, of the statistically significant nonstationarities identified by
the Nonstationarity Detection Tool may be used to segment the data for hydrologic analysis. The user
often seeks to find a balance between identifying both a homogenous flow record and one that is long
enough to be representative of the natural variation in maximum flow magnitudes at the site. It is
advisable to assess the relative “strength” of any nonstationarities detected to identify “strong”
nonstationarities for use in further analyses.

A “strong” nonstationarity is one for which there is a consensus among multiple nonstationarity detection
methods, robustness in detection of changes in statistical properties, and relatively large change in the
magnitude of a dataset’s statistical properties. Output from the Nonstationarity Detection Tool offers
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insight into the following three key criteria related to each identified nonstationarity, which can be used to
help the user select a homogenous dataset that can be used for hydrologic analysis.

A nonstationarity that is detected can be considered strong if it is detected by two or more
detection methods of the same type (e.g. mean or variance/standard deviation or distribution).
This represents consensus that a statistically significant nonstationarity occurs at a given point in
a flow record. If consensus cannot be found for a given year or short period of time, then it is
reasonable to discount it.

To analyze whether there is consensus among the methods, assess the Heatmap graphic to
determine if multiple tests targeted at identifying nonstationarities using the same statistical
property are identifying a nonstationarity in a given year or short period of time. An example of
consensus is displayed in Figure 24. Both the LePage and Energy Divisive methods are indicating
statistically significant changes in the overall distributional properties of the dataset in the mid-
nineteen sixties. This represents consensus in terms of detecting a change in the overall
distributional properties of the dataset. Similarly, in the mid-sixties, the Lombard Wilcoxon and
Pettitt tests are identifying statistically significant changes in the mean of the dataset. This
represents consensus in terms of detecting a change in the mean of the dataset.

A statistically significant nonstationarity can be considered robust when tests targeting changes
in two or more different statistical properties (mean, variance/standard deviation and/or overall
distribution) are indicating a statistically significant nonstationarity (for example, the
distributional CPM LePage tests, as well as the Lombard Mood and the CPM-Mood tests for
changes in variance/standard deviation are identifying a nonstationarity). While a robust
nonstationarity is not necessarily stronger, it represents a multifaceted change in the record. This
can be taken into consideration when deciding which portion of the period of record to use in
order to perform hydrological analysis.

To determine whether the nonstationarity is robust, examine the column associated with the year
of the nonstationarity in the Heatmap graphic for multi-colored tick marks indicating that tests
targeting changes in different statistical properties are identifying nonstationarities. As shown in
Figure 24, in addition to demonstrating consensus, the nonstationarity identified in the mid-
nineteen sixties can be considered robust because statistical tests targeting both changes in the
mean and the overall distributional properties of the dataset are identifying statistically significant
nonstationarities.

An identified nonstationarity is also associated with a given magnitude of change in the mean or
standard deviation/variance in the annual instantaneous peak streamflow datasets prior to and
after the identified nonstationarity. Nonstationarities that are produced by greater changes in the
statistical properties of the datasets before and after the identified nonstationarities may be
important to take into consideration when performing subsequent hydrological analysis.

The user is advised to review the Mean and Variance Between All Nonstationarities Detected
graphic on the Nonstationarity Detector tab to view changes in the statistical properties of the
subsets of flow record associated with each identified statistically significant nonstationarity (see
Figure 25).
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Figure 24. Robust Nonstationarity in the Nonstationarity Detector Heatmap Graphic
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Figure 25. Mean and Variance Between All Nonstationarities Detected Graphic Displaying Magnitudes of Changes

3.3.2 Hydrologic Applications and Identifying Nonstationarities

The detection of multiple nonstationarities within a short span is partly due to differences between how
each method detects and identifies nonstationarity years. Some methods detect the last year of a
homogenous period, while others identify the first year of a subsequent homogenous period (Table 1).
Where the various abrupt statistical methods detect statistically significant nonstationarities within five
years of one another, or if the smooth Lombard method detects a transition period over which the
statistical properties of the dataset are changing that is less than 5 years long, the user is encouraged to
“combine” those to be representative of a single nonstationarity in the flow record. Toselect which year
to use as the representative nonstationarity year for the last year of a homogeneous period, consider the

following criteria:

e If more methods detected a nonstationarity in one year than in the other, then the year with more

concurrence is be

st suited to segment the data.

e If multiple years have equal concurrence among the methods (e.g., two methods detected
nonstationarities in each of two consecutive years) then the more recent year is a more
appropriate choice to segment the data.
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When there are multiple, unique, strong nonstationarities detected throughout the period of record, and/or
a long period of smooth statistical change detected (via the Lombard Smooth methods), it is
recommended that the user carry out sensitivity analyses using all potential periods of record, including
the period over which the Lombard model might be detecting a smooth change and the entire period of
record of available data including any valid historical data. Note that even if a single, strong, statistically
significant nonstationarity is identified, a sensitivity analysis could still be carried out using the entire
period of record including any valid historical data.

It is important to consider that a shorter flow record is less representative of the natural variability that
exists within hydrometeorological data series. This adds uncertainty to the analysis, and ought to be
characterized alongside the presentation of results. For flow-frequency analyses, this can be accomplished
by displaying confidence limits. The user is balancing the need to identify a homogenous flow record
with the need to identify one that is long enough to be representative of the natural variation in maximum
flow magnitudes at the site.

As part of the analysis, the user is advised to assess the sensitivity of the results to altering the period of
record used for analyses, and whether the observed trend is expected to persist into the future. The
following sensitivity tests are recommended if nonstationarities are detected:

e Conduct a sensitivity analysis using the period of record following all statistically significant,
“strong” nonstationarities identified within an annual instantaneous peak streamflow dataset.

e |f the smooth Lombard model identifies a long (greater than 5 years) period where the statistical
properties of the dataset are in flux, which also transects the portion of the period of record
following other abrupt, “strong” nonstationarities, an additional sensitivity analysis could be
conducted including the portion of the period of record identified as in flux by the smooth
Lombard model. For example, if the period of record is 1902-2014 and the smooth Lombard
model identifies the period 1938-1970 as being in flux, a sensitivity analysis could be conducted
using the period of record from 1938-2014.

e The case where the smooth Lombard method is indicating that the statistical properties associated
with long portions of a dataset are gradually changing will be addressed in greater detail in future
updates to the tool.

e Asensitivity analysis could be conducted to assess the differences between the results generated
using a truncated record for analysis versus applying traditional methods that incorporate all
available flow data (period of record analysis).

Engineers use their judgment and experience to consider the resiliency of the system when incorporating
the range of results produced by conducting the sensitivity analysis described above in their adopted
hydrologic design or study results.

3.4 Monotonic Trend Analysis

If nonstationarities are detected, the Mann-Kendall test and the Spearman test is then be applied to check
for the presence of monotonic trends in the identified subsets of statistically homogenous flow datasets
under consideration for analysis. Monotonic trend analysis are not appropriate for a homogenous subset
of data containing less than ten years. If no statistically significant nonstationarities are identified within
an annual instantaneous peak streamflow dataset, then the entire period of record could be assessed for
monotonic trends.
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The Timeframe Selection slider on the right side of the Trend Analysis tab is used to select the timeframe
associated with each subset of homogenous streamflow data identified by the Nonstationarity Detection
Tool. If no statistically significant nonstationarities were identified, then the entire period of record may
be used. Note that the nonstationarities identified in the proceeding section can be assumed to be
representative of the end year of a homogenous subset, so the start year of each subsequent homogenous
subset would be the water year following an adopted nonstationarity. For example, if the continuous
period of record is 1902-2014, and a single nonstationarity is detected in water year 1942, then the final
homogenous subset of data would be defined as 1943-2014. As shown in Figure 26, the results fromthe
Mann-Kendall and Spearman tests, and an indication of whether the monotonic trends detected are
increasing or decreasing, will be displayed below the flow series.
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Figure 26. Trend Analysis for Period between Nonstationarities detected in 1943 and 2013

At a minimum, this process is repeated for all segments of the time series being considered for hydrologic
analyses. For example, if the full time series extends from 19211982, and the practitioner finds
nonstationarities in 1932 and 1970, then the periods from 1933-1982, and 1971-1982 are candidates to be
examined for monotonic trends. If the practitioner used the Lombard smooth tests to identify a long
period over which the statistical properties of the dataset appear to be in flux, it is appropriate to assess
that portion of the period of record for monotonic trends. If, in the example described above, the
Lombard smooth test identifies the period from 1937-1967 as being in flux, than an additional test for
monotonic trends could be conducted between 1937 and 1982. To gain additional insight into the dataset
being analyzed the user could also examine the portions of the period of record prior to identified
changepoints (1921-1932 and 1921-1970 in the example above), as long as the periods of record are of
sufficient length.
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The assessment of monotonic trends will provide the user with further insight into the trends observed
within the statistical properties of the flow data. The test results do not support attribution of the trend;
engineering judgment is required the determine whether the trend is likely to persist in the future. If a
monotonic trend is detected, this implies that the time series still may not meet the assumption of
stationarity. This finding would be documented and the users continue to apply engineering judgment
when carrying out hydrologic analysis. The case where monotonic trends are still detected after
statistically identified nonstationarities have been accounted for will be addressed in greater detail in
future versions of the tool.
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4 Examples

4.1 Simple Analysis (with a priori knowledge)
USGS ID 08089000 Brazos River near Palo Pinto, Texas

This example demonstrates how to use the Nonstationarity Detection Tool to detect nonstationarities in an
annual instantaneous peak streamflow record where there is a priori knowledge that a nonstationarity may
exist in the record. The flow data used in this example was collected at the USGS gage site located on the
Brazos River near Palo Pinto, Texas (USGS ID 08089000). Annual peak streamflows recorded on the
Brazos River near Palo Pinto are known to be impacted by upstream regulation.

4.1.1 Exploratory Analysis

Figure 27 shows the annual instantaneous peak streamflow time series obtained from the USGS website.
A visual examination of this time series suggests that there have been changes in the annual instantaneous
peak streamflow record over the past 90 years. In particular, the values prior to the 1940s are on average
higher than later years. Examination of the metadata associated with this record (available at:
http://wdr.water.usgs.gov/wy2013/pdfs/08089000.2013.pdf) indicates that the construction of the Possum
King Lake project was completed around 1941. This is also supported by the application of the USGS
Peak Streamflow Qualification Code “6” (“Discharge affected by Regulation or Diversion™) to
instantaneous peak streamflow data starting in 1941. Based on this information, a priori knowledge exists
that an abrupt change occurred in the early nineteen forties due to construction of the Morris Sheppard
Dam, which impounds Possum King Lake. Therefore, the next step in the analysis is to formally test
whether a nonstationarity exists in the annual instantaneous peak streamflow record observed at Palo
Pinto in the early forties.

USGS 08089000 Brazos Rv nr Palo Pinto, TX
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Figure 27. Annual peak streamflow time series for the Brazos River near Palo Pinto in Texas (USGS ID 08089000)
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4.1.2 Selecta USGS Site and Timeframe for Nonstationarity Detection

On the Nonstationarity Detector tab, the user selects a state and a site—for this example, “Texas” and
“BRAZOS RV NR PALO PINTO, TX”—from the Site Selection dropdown menus located to the right of
the Nonstationarities Detected using Maximum Annual Flow graphic (Figure 28). Because the annual
instantaneous peak streamflow record at this gage site is continuous, the timeframe does not need to be
adjusted before carrying out analysis.
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Figure 28. Nonstationarity Detector Tab for the Brazos River near Palo Pinto in Texas (USGS ID 08089000)
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Nonstationarity Detection

As shown in Figure 28, the twelve nonstationarity detection methods contained in the tool collectively
detected nonstationarities in two different years. To determine the types of changes detected by these
methods, the user can hover over the vertical bars in the top graph to reveal the year and the statistical
methods that detected the change (see Figure 29).
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Figure 29. Detailed Results for the Nonstationarity Detected in 1942 for the Brazos River near PaloPinto in Texas (USGS
1D 08089000)

These results are also presented in the Heatmap. The color scheme associated with the tick marks shows
that the detection methods are identifying nonstationarities driven by changes in the overall statistical
distribution of the data and in the mean. An evaluation of the strength of the nonstationarities follows:

1. Consensus: The relative strength of a detected nonstationarity can be determined by looking at the
level of consensus between different methods targeted at detecting the same type of nonstationarities
(variance/standard deviation, mean, or overall distribution) in a flow data series. The statistically
significant nonstationarity detected in 1943 has consensus among three methods that detect a change
in distribution and between two methods that detecta change in mean.

Due to the way the Pettit statistical test is performed (Table 1), the nonstationarity detected by the
Pettit method in 1943 is appropriate for1942. However, where the various abrupt statistical methods
detect statistically significant nonstationarities within five years of one another, the user is
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encouraged to “combine” those to be representative of a single nonstationarity in the flow record.
Consequently, the changepoint detected by the Pettitt test is considered indicative of the same
nonstationarity being detected in 1943 by the other methods. The nonstationarity detected in 1959
lacks consensus because it was only detected by a single method.

2. Robustness: The Heatmap graphic in Figure 28 shows that multiple nonstationarity detection
methods detected nonstationarities in the mean and the overall distributional properties of the dataset
in the early nineteen forties. Consequently, the nonstationarity detected in the early forties can be
considered representative of “robust” changes in the statistical properties of the flow dataset under
analysis.

3. Magnitude: Using the segmented Mean and Variance Between All Nonstationarities Detected
graphic displayed at the bottom of the Nonstationarity Detector tab (shown in Figure 30), users can
examine the differences in the mean and variance/standard deviation associated with the average of
subsets of annual instantaneous peak streamflow data prior to and after detected nonstationarities. As
could be expected due to the construction of a dam designed to mitigate flood flows, the
nonstationarities detected by the statistical tests targeted at detecting changes in the mean correspond
to relatively large changes in the mean annual instantaneous peak streamflow between each of the
nonstationarities identified. Between 1942 and 1944, the mean annual instantaneous peak streamflow
decreases from approximately 42,000 cfs to 19,000 cfs.
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Figure 30. Mean and Variance Between All Nonstationarities Detected Graphic for the Brazos River near Palo Pinto in
Texas (USGS ID 08089000)

In this example, the default sensitivity values facilitated the detection of the known nonstationarity in
1943. Consequently, the default sensitivity parameters were adopted for analysis. |fthe web tool had
failed to detect the known nonstationarity in the period of record using the default sensitivity parameters,
the user could take steps to incrementally adjust the sensitivity of the tests until the known nonstationarity
is detected. Any other nonstationarities detected after these sensitivity parameters are adjusted are
considered equally significant. If the user feels it is necessary to adjust the default parameters to identify a
known nonstationarity based on prior knowledge, this would be documented and the sensitivity
parameters applied recorded.

Where there is a prior knowledge of a specific water management feature becoming operational, the user
considers both local knowledge of when the homogenous operating period at the structure commenced
and the nonstationarity that the detection tool is identifying when selecting a homogenous period of
record for analysis. Deference is given to the known homogenous operating period when several
consecutive years are indicated by the tool. For example if two of the nonstationarity detection methods
are indicating 1941 as a nonstationarity year, one nonstationarity detection method is detecting 1942 as a
nonstationarity year, and the district engineer indicates that the reservoir was not filled until after the
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spring of 1942, the adopted period of record for hydrologic analysis would be 1943-2014, because this
reflects homogenous operation of the reservoir.

4.1.3 Monotonic Trend Analysis

The next portion of the analysis consists of assessing the subsets of homogenous data for monotonic
trends. Because one statistically significant nonstationarity—with consensus among different methods—
was detected (1943), the user divides the data into two statistically stationary (homogenous) segments or
periods of record based on the single nonstationarity identified:

e 1924-1942 (Before Morris Sheppard Dam)
e 1943-2014 (After Morris Sheppard Dam)

To assess monotonic trends within the record, the user can navigate to the “Trend Analysis” tab, shown in
Figure 31, where the tool performs multiple statistical tests to detect the presence of monotonic trends
within the annual instantaneous peak streamflow data series. Adjusting the timeframe to look for trends
within each of the two stationary subsets of the period of record, as described in Section 3.2, yields the
results shown in Figure 32:
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Figure 31. Trend Analysis Page for the Brazos River near Palo Pinto in Texas (USGS ID 08089000)
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a. 1924-1942 (Before Morris Sheppard Dam)

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.
No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?
Using parametric statistical methods, no trend was detected.
IUsing robust parametric statistical methods (Sen’'s Slope), no trend was detected.

b. 1943-2014 (After Morris Sheppard Dam)

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.

No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?
Using parametric statistical methods, no trend was detected.
Using robust parametric statistical methods (Sen’'s Slope), no trend was detected.

Figure 32. Monotonic trend analysis results for a) 1924-1942 and b) 1943-2014.

The results indicate that, if the dataset is separated into statistically homogenous subsets of flow data prior
to and after the construction of the Morris Dam, there is not an overall, statistically significant, monotonic
trend in the annual instantaneous peak streamflow record for Brazos River.

4.1.4 Application to Hydrologic Analysis

The results of the assemblage of nonstationarity detection methods applied using the Nonstationarity
Detection Tool strongly supports the notion that the distributions in the two sub-series (pre- and post-
dam) are different. Although the construction of the dam was completed in 1941, the Nonstationarity
Detection Tool identifies a nonstationarity in the statistical properties of the dataset in 1943. This is likely
because although the dam was constructed in 1941, it likely took a few years for the reservoir to fill and
for “normal” operation to commence. For this reason, engineering judgment and a know ledge of reservoir
operation/history is important when conducting hydrologic analysis. For the purpose of this example, it
will be assumed that normal reservoir operation was initiated in 1943.

A priori knowledge of the existence of abrupt changes allows for testing differences in the distribution
generating the records before and after the year of the known nonstationarity. In the preceding example,
USGS metadata provided information about the construction of a dam in 1941. Engineering practice
generally considers that because the flow record is impacted by regulation, design flood estimation for the
present might not be appropriate using the entire period of record. There are two ways to address this
issue: the pre-1943 period can be excluded from analysis; or, preferably, the pre-1943 period can be
adjusted to be reflective of current basin conditions using a reservoir model. A monotonic trend analysis
was applied to assess both the non-regulated portion of the period of record at this site and the current,
regulated condition at this site. As expected, the monotonic trend analysis returned no significant trends
within the homogenous subset of data prior to and post the construction of the water management
structure. Thus, the 1924-1942 and the 1943-2013 subsets of the period of record can be considered
stationary. Further analyses rely on current USACE guidance: Engineer Manual (EM) 1110-2-1417,
Flood-Runoff Analysis (1994) and EM 1110-2-1413, Hydrologic Analysis of Interior Areas (1987).
Engineering judgment can consider the resiliency of the system when incorporating the range of results
produced by conducting the sensitivity analysis described above in the adopted hydrologic design or
study results..
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4.2 Complex Analysis (without a priori knowledge)
USGS ID 05082500 Red River of the North at Grand Forks, North Dakota

4.2.1 Problem Statement

Consider the case in which there is no a priori knowledge of the existence of an abrupt change in the
annual instantaneous peak streamflow data series. This more complex example is based on the annual
instantaneous peak streamflow for the Red River of the North at Grand Forks, North Dakota (USGS ID
05082500). Figure 33 shows the annual instantaneous peak streamflow time series obtained from the
USGS. There is a substantial amount of drainage area between Grand Forks, North Dakota and any
upstream water control structures. Consequently, there is no prior knowledge indicating that there is a
nonstationarity within the streamflow record at Grand Forks.

USGS 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND
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Figure 33. Annual peak streamflow time seriesfor the Red River of the North at Grand Forks, ND (USGS 1D 05082500)

The Nonstationarity Detection Tool was applied to check for nonstationarities within the streamflow
record at Grand Forks, North Dakota.

4.2.2 Selecta USGS Site and Timeframe for Nonstationarity Detection

As before, select the state—“North Dakota” and site name—*“RED RIVER OF THE NORTH AT
GRAND FORKS, ND” —from the Site Selection dropdown menus. In this case, the timeframe does not
need to be adjusted because the gage contains a continuous dataset for the entire period of record (see
Figure 34).
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Figure 34. Nonstationarity Detector Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500)

4.2.3 Nonstationarity Detection

As can be seen in the Nonstationarities Detected using Maximum Annual Flow graphic in Figure 34, the
detection tool identified several nonstationarities, both abrupt (grey vertical lines) and smooth (blue
shading), within the annual instantaneous peak streamflow record at Grand Forks.

45



As with the first example, hovering over the vertical bars in the Nonstationarities Detected using
Maximum Annual Flow graphic indicates the exact year when an abrupt nonstationarity was detected,
along with a list of the statistical tests that detected the change in the statistical properties of the flow
record. This information is also presented using the color coded tick marks in the Heatmap, with one tick
mark—color coded by the type of nonstationarity detected—for each year in which an abrupt change was
detected.

As seen in Figure 34, the Smooth Lombard Wilcoxon method also detects smooth changes in the mean of
the annual instantaneous peak streamflow extending from 1936-2008 and the Smooth Lombard Mood
method detects a smooth transition in sample variance/standard deviation of the annual instantaneous
peak streamflow extending from 1993-1995. The output of the Smooth Lombard tests indicate that the
statistics associated with the flow record at Grand Forks are in flux over these periods of time. Because
the smooth Lombard Mood result indicates a transitional period of five years or less, it can be compared
directly to the abrupt nonstationarities indicated by the other techniques. It is analogous to an abrupt
nonstationarity in 1995. The longer duration transitional period (1936-2008) identified by the Smooth
Lombard Wilcoxon method must be considered independently.

Because the clusters of nonstationarities detected between 1964-1965 and 1991-1995 fall within five year
periods, these clusters can be analyzed as two statistically significant nonstationarities. An evaluation of
the strength of the nonstationarities follows:

1. Consensus:

a. 1964-1965: There is consensus between the LePage, Kolmogorov-Smirnov, and Energy
Divisive methods which indicate changes in the distributional properties of flow datasets.

b. 1993-1995: There is consensus between the abrupt Lombard Wilcoxon and Mann-
Whitney methods, which detect changes in the mean associated with flow datasets.

2. Robustness: As can be seen in the Heatmap in Figure 34, both of these nonstationarities can be
considered robust. The nonstationarity detected between 1993 and 1995 is indicated by statistical tests
that target changes in mean, variance/standard deviation, and overall distribution. The
nonstationarities detected between 1964-1965 are indicated by statistical tests that target changes in
mean and the overall statistical distribution of the datasets being assessed.

3. Magnitude: Using the Mean and Variance Between All Nonstationarities Detected graphic, located
at the bottom of the Nonstationarity Detector tab (Figure 34), the nonstationarities detected in the
1960s correspond to changes of about 8,000 cfs in the mean of the annual instantaneous peak
streamflow. The nonstationarity detected in 1990s corresponds to a change of 21,000 cfs in the mean,

13,000 cfs in the standard deviation, and 560,000,000 cfs2 in the variance of the annual instantaneous
peak streamflow.

Because the nonstationarities detected between 1964-1965 and 1991-1995 demonstrate consensus, can be
considered robust, and represent appreciable changes in the mean and variance/standard deviation
associated with each subset of data the engineer can conclude that there are two, strong statistically
significant nonstationarities within the dataset.

Within the period 1964-1965 the majority of nonstationarities are detected in 1964. Consequently, 1964
can be adopted as the representative nonstationarity year for this period. Within the period 1993-1995, the
majority of nonstationarities are detected in 1994. Note that if, for example, two methods were detecting
nonstationarities in 1993 and two methods were detecting nonstationarities in 1995 the user would adopt
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1995 as the end of the homogenous period because it is the more recent year. The selected nonstationarity
years are assumed to be the end year of each homogenous subset identified.

The tool detected an extended, gradual change in the variance/standard deviation between 1936 and
2008. This provides additional context for future analyses and alerts users that the stationarity assumption
may not necessarily hold throughout this entire period.

It is recommended that the default sensitivity values be adopted for analysis. Consequently, for this
example application, default sensitivity parameters were applied. If the user chooses to alter the
sensitivity parameters associated with the statistical tests executed by the web application, the new
parameters could be recorded, and a description of how sensitivity parameters were modified could be
included in report documentation.

4.2.4 Monotonic Trend Analysis

The next portion of the analysis consists of assessing the subsets of data for monotonic trends. Given
these results, a user would divide the data into five segments or periods of record based on the three
nonstationarities identified:

e 1882-1964
e 1965-2014
e 1882-1994
e 1995-2014
e 1936-2014

To assess monotonic trends within these subsets of the flow record, the user can navigate to the Trend
Analysis tab, where the tool performs multiple statistical tests to detect the presence of monotonic trends
in the annual instantaneous peak streamflow record, as seen in Figure 35.

Adjusting the timeframe to look for trends within each of the five subsets of the period of record yields
the results shown in Figure 35.

The results indicate that there were no statistically significant trends in annual instantaneous peak
streamflow in any of the first four subsets of data (1882-1964, 1965-2014, 1882-1994, and 1995-2014).
As expected, there was a statistically significant, positive monotonic trend detected in the portion of
period of record following the onset of the smooth transition detected by the Lombard Wilcoxon test
(1936-2014).
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Figure 35. Trend Analysis Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500)
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a. 1882-1964

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.
No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?
Using parametric statistical methods, no trend was detected.
IUsing robust parametric statistical methods (Sen’s Slope), no trend was detected.

b. 1965-2014

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.

No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?

Using parametric statistical methods, no trend was detected.
Using robust parametric statistical methods (Sen’'s Slope), no trend was detected.

c. 1882-1994

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.
No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?
Using parametric statistical methods, no trend was detacted.
IUsing robust parametric statistical methods (Sen’'s Slope), no trend was detected.

d. 1995-2014

Monotonic Trend Analysis

Is there a statistically significant trend?
No, using the Mann-Kendall Test at the .05 level of significance.
No, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?
Using parametric statistical methods, no trend was detected.
IUsing robust parametric statistical methods (Sen’s Slope), no trend was detected.

e. 1936-2014

Monotonic Trend Analysis

Is there a statistically significant trend?
Yes, using the Mann-Kendall Tast at the .05 level of significance.

Yes, using the Spearman Rank Order Test at the .05 level of significance.

What type of trend was detected?

Using parametric statistical methods, a positive trend was detected.
Using robust parametric statistical methods (Sen's Slope), a positive trend was detected.

Figure 36. Trend Analysis Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500): a) 1882-1964, b)

1965-2014, c) 1882-1994, d) 1995-2014, and e) 1936-2014.
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4.2.5 Application to Hydrologic Analysis

Because there are multiple “strong” statistically significant nonstationarities identified within the annual
instantaneous peak streamflow record observed at Grand Forks, North Dakota, design flood estimation for
the present might not be appropriate using the entire period of record. If one were to use the entire period
of record, recurrence intervals would inaccurately reflect the risk of occurrence associated with a given
flood magnitude. To carry out hydrologic analysis, the flow record could be truncated to the portion of the
period of record following a “strong” and statistically significant nonstationarity.

As in the previous example, a shorter flow record is less representative of the natural variability that exists
within hydrometeorological data series. This adds uncertainty to the analysis, which can be characterized
alongside the presentation of results (e.g., by confidence limits). Periods of record adopted for hydrologic
analysis generally have a minimum record length of 30 years. Consequently, the period of record after the
1994 nonstationarity (1995-2014) may not be acceptable for use. The user could seek to find a balance
between identifying both a homogenous flow record and one that is long enough to be representative of
the natural variation in maximum flow magnitudes at the site.

When there are multiple nonstationarities detected with consensus, and/or a long period of smooth
statistical change (via Lombard) detected, it is recommended that the user carry out sensitivity analyses
using all potential periods of record, including the period over which the Lombard model might be
detecting a smooth change and the entire period of record of available data. Note that even if a single,
strong, statistically significant nonstationarity is identified, a sensitivity analysis using the entire period of
record is advisable. As part of the analysis, the user could assess the sensitivity of the results to altering
the period of record used for analyses and whether the observed trend is expected to persist into the
future.

For the Red River of the North at Grand Forks, ND, the following sensitivity tests could be carried out in
support of nonstationarities detected in the unregulated record:

1. Asensitivity analysis using the period of record following the “strong,” statistically significant
nonstationarity identified within the annual instantaneous peak streamflow record for which there is
greater than 30 year of subsequent observations using the period of record from 1965-2014.

2. Because the smooth Lombard Wilcoxon model identifies a long (greater than 5 years) period where
the statistical properties of the dataset are in flux, and because this transitional period transects the
portion of the period of record following the other abrupt, “strong” nonstationarities, an additional
sensitivity analysis could be conducted using the period of record from 1936 to 2014. This contains
the portion of the period of record identified as in flux by the smooth Lombard model. The case
where the smooth Lombard method is indicating that the statistical properties associated with long
portions of a dataset are gradually changing will be addressed in greater detail in future versions of
the tool.

3. Asensitivity analysis could be conducted to assess the differences between the results generated
using the truncated records described above (1965-2014, and 1936-2014) for analysis versus applying
traditional methods that incorporate all available flow data (1882-2014 and any historical flood
events).

There are no statistically significant, monotonic trends detected before or after the two nonstationarities
identified in 1964 and 1994. The results of the monotonic trend analysis supports the hypothesis that these
nonstationarities are appropriate for use in segmenting the dataset into homogenous subsets of data. The
only caveat to the conclusion that the 1995-2014 or 1965-2014 record is stationary is the detection of the
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Lombard Wilcoxon Smooth nonstationarity detected between 1936 and 2014. The results of the Smooth
Lombard Wilcoxon test point to a degree of statistical instability throughout the portion of the period of
record between 1936 and 2008.

When a monotonic trend is detected in the dataset adopted for analysis, or when a long, transition period
is detected by one of the smooth nonstationarity detection methods within the adopted period of record,
the time series may still not meet the assumption of stationarity. If so, these findings are documented, and
the user applies engineering judgment when carrying out hydrologic analysis in accordance with current
USACE guidance: Engineer Manual (EM) 1110-2-1417, Flood-Runoff Analysis (1994) and EM 1110-2-
1413, Hydrologic Analysis of Interior Areas (1987). Engineering judgment can consider the resiliency of
the system when incorporating the range of results produced by conducting the sensitivity analysis
described above in the adopted hydrologic design or study results.

Given the potential instability in this record, efforts to qualitatively evaluate what might be driving the
nonstationarities detected in the flow record are advisable The guidance presented in USACE Engineering
and Construction Bulletin 2014-10, Guidance for Incorporating Climate Change Impacts to Inland
Hydrology in Civil Works Studies, Designs, and Projects, could be applied to qualitatively assess
projected climate trends in the region. Temporal variation in land use practices could be studied using
historic land use datasets and aerial imagery. Hydraulic structure inventories could be consulted to assess
when both major and minor hydraulic structures were installed throughout the study area.
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4.3 No Statistically Significant Nonstationarity Detected
USGS ID 05388250: Upper lowa River near Dorchester, lowa

4.3.1 Problem Statement

This example assesses the stationarity assumption as it applies to the annual instantaneous peak
streamflow dataset recorded along the Upper lowa River near Dorchester, lowa (USGS ID 05388250).
Figure 37 shows the annual instantaneous peak streamflow time series obtained from the USGS for gage
05388250. There is no prior knowledge indicating that there might be a nonstationarity within the
streamflow record at Dorchester, lowa.

USGS 05388250 Upper lowa River near Dorchester, I1A
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Figure 37. Annual peak streamflow time series for the Upper lowa River near Dorchester, lowa (USGS ID 05388250)

4.3.2 Selecta USGS Site and Timeframe for Nonstationarity Detection

Using the Site Selection dropdown menus, located on the right side of Nonstationarity Detector tab, the
user selects lowa from the “state” menu and the site of interest—“UPPER IOWARIVER NEAR
DORCHESTER, IA”—from the “Site Name” dropdown. In Figure 38, the annual instantaneous peak
streamflow time series in the Nonstationarities Detected using Maximum Annual Flow graphic shows
missing data between 1941 and 1976.
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Figure 38. Nonstationarity Detector Tab for the Upper lowa River near Dorchester, lowa (USGS ID 05388250) — Without
Timeframe Adjustment

Using the Timeframe Selection slider on the right side of the Nonstationarity Detector tab, the user must
limit the timeframe selected for analysis to the period with continuous flow data: 1976-2014. Note that
changing the timeframe will impact the nonstationarities detected by the tool.
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4.3.3 Nonstationarity Detection

Now that the timeframe and site have been selected, the results of the detection analysis can be assessed.
As shown in Figure 39, no nonstationarities were detected by the tool for the continuous period of record
beginning in 1976. For this example, the default sensitivity parameters were applied. If the user chooses
to alter the sensitivity parameters associated with the statistical tests executed by the Nonstationarity

Detection Tool, the new parameters would be recorded, and a description of how sensitivity parameters

were modified is also included.
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Figure 39. Nonstationarity Detector Tab for the Upper lowa River near Dorchester, lowa (USGS ID 05388250) — With

Timeframe Adjustment
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4.3.4 Monotonic Trend Analysis

The next portion of the analysis consists of assessing the subsets of homogenous data for monotonic
trends. In this case, because no nonstationarities were identified for analysis, there is no need to segment
the record. The entire period of record is assessed for monotonic trends. As can be seen in Figure 40,

there is no statistical evidence of a monotonic trend in the annual instantaneous peak streamflow recorded
on the lowa River near Dorchester, IA.
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Figure 40. Trend Analysis Tab for the Upper lowa River near Dorchester, lowa (USGS ID 05388250)

4.3.5 Application to Hydrologic Analysis

At streamflow gage sites where no nonstationarities are detected, inland hydrologic analysis will continue
to be evaluated in the manner described in current USACE guidance: Engineer Manual (EM) 1110-2-
1417, Flood-Runoff Analysis (1994) and EM 1110-2-1413, Hydrologic Analysis of Interior Areas (1987).
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Appendix 1: Glossary of Statistics Terms

Bayesian — In contrast to “Frequentist” statistics, Bayesian statistics interprets probability as a quantity
assigned to a state of belief. In the Bayesian view, a probability can be assigned to a hypothesis, which is
known as the prior.

Monotonic Trend — A variable increases or decreases consistently over time. This does not imply a
linear trend.

Parametric — From a branch of statistics that assumes the sample data comes from a population that
follows a probability distribution based on a fixed set of parameters.
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Posterior Probability — This is unique to Bayesian statistics. It is the outcome of a Bayesian model. A
Bayesian assigns a prior probability to a hypothesis, then uses the data to inform the model, before
outputting the new state of belief around an event.

Stationarity — The assumption that the statistical characteristics of hydrologic time series data are
constant through time.

Type | Error — The probability of accepting an alternative hypothesis when the null hypothesis is true.

Appendix 2: Version Changelog

Version 1.1 changes resulting from review comments of version 1.0

The tool uses instantaneous streamflow data through Water Year 2014 incorporating those gages
for which metadata is available in the database (OBSERVED _TSS). This means that some gages
will be unavailable to users initially (e.g. 08246500 Conejos River nr Mogote, CO).

Missing data points in a period of record are no longer connected by a line. This will help users
better determine where the continuous period of record starts and ends. See Upper lowa River
near Dorchester, 1A for an example.

There is now a dynamic warning box below the tool that alerts users when they have selected a
period of record less than ideal for the type of analysis they are conducting (30 years for
nonstationarity detection, 10 years for trend detection) and/or when they have selected a
discontinuous period of record. These warning messages appear directly below the graphic and
emphasize that the user could adjust the period of record to avoid potential issues.

There is now a static dialog below the main graphics on each of the three tabs that describes the
data being shown and reminds the user to use both a long and continuous period of record if
possible.

The sensitivity issues with the abrupt Lombard methods have been resolved. Using the gages and
comments provided by the independent reviewers, we were able to determine a revised level of
sensitivity for these methods. We are holding the sensitivity parameter for these methods constant
to obtain user feedback on the new level of sensitivity before determining an appropriate range of
values.

Some users commented that the CPM Methods were detecting changepoints prior to the startup
period that they had supplied. After looking into this issue, we determined that there was a
miscommunication about the way in which the CPM Methods function. To address this, we have
since updated the language in the user guide and changed the name of the parameter in the tool to
avoid confusion. These methods perform two scans of the data. The first scan is to determine if
there are any changes in the mean/variance/distribution occur and this is the scan that takes this
value into account. Asecond scan of the data is then made to determine when these changes in
the mean/variance/distribution occurred and these are the resulting changepoints displayed. This
second scan can sometimes determine that the time at which a change occurred is prior to when it
was initially detected in the first scan. For more details and a very helpful graphic, Section 4.2 on
Page 13 in this document explains this as well (http://gordonjross.co.uk/cpm.pdf).

The reviewer’s version of the tool appeared to crash when the Energy Divisive Method sensitivity
was set to 1; this has been resolved.

The reviewer’s version of the tool appeared to calculate the Kolmogorov-Smirnov method
incorrectly for a specific HUC; this has been resolved.

A landing page has been added to the tool. It uses language from the user guide and explains the
layout/functionality of each tab. It also provides contact information for the team.
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